

Axial piston variable pump A10VO Series 32

RE 92705

Edition: 06.2016 Replaces: 01.2012

- Optimized medium pressure pump for powerful machines
- ▶ Sizes 45 to 180
- ► Nominal pressure 280 bar
- ► Maximum pressure 350 bar
- ▶ Open circuit

Features

- ► Variable pump with axial piston rotary group of swashplate design for hydrostatic drives in open circuit
- ► Flow is proportional to the drive speed and displacement.
- ► The flow can be infinitely varied by adjusting the swashplate angle.
- ▶ Hydrostatic unloading of the cradle bearings
- ► Port for measurement sensor on high pressure port for size 180 or port plate 22 and 32
- ► Low noise level
- ► Increased functional reliability
- ► High efficiency
- ► Favorable power/weight ratio
- ▶ Universal through drive for Only size 180
- ► Optional pulsation damping

Contents	
Ordering code	2
Hydraulic fluids	4
Working pressure range	6
Technical data	7
DR - Pressure controller	9
DRG – Pressure controller, remotely controlled	10
DRF/DRS/DRSC - Pressure and flow control	11
LA Pressure, flow and power controller	13
LA – Variations	14
ED – Electro-hydraulic pressure control	15
ER – Electro-hydraulic pressure control	16
Dimensions size 45	17
Dimensions size 71	22
Dimensions size 100	27
Dimensions size 140	31
Dimensions size 180	36
Dimensions, through drives	40
Overview of mounting options	48
Combination pumps A10VO + A10VO	49
Connector for solenoids	50
Installation instructions	51
Project planning notes	54
Safety instructions	54

2

Ordering code

0	1	02	03	04		05	06		07	08	09	10	1	1	12
A1	οv	0			1	32		_	V						
Axial	pistor	n unit							,						
01			sign, variak	ole, nominal	pressu	ıre 280 bar,	maximu	m press	ure 350 bar			,	,		A10V
Oner	ating r	mode													
02		o, open ci	rcuit												0
Sizas	(NG)														•
03	1	netric disi	olacement.	see "Techni	ical dat	a" on page	7			045	071	100	140	180	1
	rol dev					1,101									_
04		sure contr	oller	Hydraulic		,				•	•	•	•	•	DR
0 1		ith flow co		Hydraulic	χ-	T open				•	•	•	•	•	DRF
				,		T plugged		with f	ushing function		•	•	•	•	DRS
						T plugged			it flushing fund		•	•	•	•	DRSC
	Pr	essure cu	t-off	Hydraulic		emotely con	trolled			•	•	•	•	•	DRG
				electrical		egative conf			U = 12 V	•	•	•	•	•	ED71
									U = 24 V	•	•	•	•	•	ED72
				electrical	p	ositive cont	rol		U = 12 V	•	•	•	•	•	ER71 ¹
									U = 24 V	•	•	•	•	•	ER72 ¹
	Differ contr	rential pre	essure	electrical	n	egative con	trol	see da	ta sheet 9270	•	•	•	•	0	EF.
	Powe	er controll	er with								•		•		
	Pr	essure cu	t-off	Hydraulic	В	eginning of	control	to	50 bar	•	•	•	•	•	LA5D
								from	51 to 90 bar	•	•	•	•	•	LA6D
									91 to 160 ba	ar •	•	•	•	•	LA7D
									161 to 240 k	oar •	•	•	•	•	LA8D
								above	240 bar	•	•	•	•	•	LA9D
		ressure cu ow contro		Hydraulic	В	eginning of	control	see LA	D	•	•	•	•	•	LA.DS
		emote-cor essure cu		Hydraulic	В	eginning of	control	see LA	D	•	•	•	•	•	LA.DO
	Se	eparate flo	w control	Hydraulic	В	eginning of	control	see LA	D	•	•	•	•	•	LA.S
Serie	s														
05	Serie	s 3, index	2		,							,	,		32
Direc	tions	of rotatio	n												
06		ed on driv						clockv	vise	,					R
								count	er-clockwise						L
Seal	1														
07	FKM	(fluoroela	stomer)												V
	shaft		· · · ·												
08 08		ed shaft		standard s	haft					•	•	•	•	•	s
00		B92.1a				6" however	for highe	er input	torque	•	—	-	-	_	R
	,	202.14				, limited su					+				
						es, page 8)				•	•	•	•	-	U
				same as sh		_		-	ted suitability	0	0	•	•	•	w

¹⁾ Comply with project planning notes on page 16

01	1	02	03	04		05	06		07	08		09	10	1	.1	12
A10	0V	0			1	32		-	V							
Moun	ting fla	nge									045	071	100	140	180	
09	ISO 30	19-1 (SAE)		SAE C; 2-	hole						•	•	•	•	-	С
				SAE C; 4	hole						•	•	•	•	•	D
				SAE D; 4	hole		,				-	•	-	-	-	U
Worki	ing por	t								,		•	•	•	•	,
10		ange port	brough	rear, met	ar, metric fastening thread (not for through drive)							•	•	•	•	11
	drive a	olates and t ssignment,	_	at top, at	top, at bottom, on opposite side, metric fastening thread						•	•	•	•	_	12
	see position 11)		• •	-		site side, m e U; witho		•		0	0	0	0	•	22 ¹⁾	
				• •	-		site side, m e U; with p		•	d	0	0	0	0	•	32 ¹⁾
Throu	ıgh driv	re (for mour	nting op	tions, see	page 48)							,	•	•	,	
11	Flange	ISO 3019-1	L	Attach-	Н	ıb for spl	ined shaft ²⁾)								
	Diamet	ter		ment ⁴⁾	Di	ameter					045	071	100	140	180	
	withou	ıt through d	rive	(Only for	port pla	tes 11 ar	nd 12)				•	•	•	•	•	N00
	82-2 (A	4)		8000	5/	8 in 9	T 16/32DP				•	•	•	•	-	K01
					3/	// in 1	1T 16/32DF				_				_	K52

Trange 100 0010 1	Attach	1100 101 5	pilited stidit						
Diameter	ment ⁴⁾	Diameter		045	071	100	140	180	
without through drive	(Only for p	ort plates 11	and 12)	•	•	•	•	•	NO
82-2 (A)	80000	5/8 in	9T 16/32DP	•	•	•	•	-	ко
	_	3/4 in	11T 16/32DP	•	•	•	•	-	K5:
101-2 (B)	80000	7/8 in	13T 16/32DP	•	•	•	•	-	K6
	_	1 in	15T 16/32DP	•	•	•	•	-	ΚO
127-2 (C)	_გ ⊶	1 1/4 in	14T 12/24DP	_	•	•	•	-	KO
	_	1 1/2 in	17T12/24DP	-	-	•	•	-	K24
127-4 (C)	XX	1 1/4 in	14T 12/24DP	_	0	•	•	_	K1
152-4 (D)	; ;	1 3/4 in	13T 8/16DP	-	-	-	•	-	K1
without through drive	(Only poss	ible with port	plates 22 and 32) ³⁾	0	0	0	0	•	UO
82-2 (A)	80000	5/8 in	9T 16/32DP	0	0	0	0	•	U0
	_	3/4 in	11T 16/32DP	0	0	0	0	•	U5
101-2 (B)	80000	7/8 in	13T 16/32DP	0	0	0	0	•	U6
	_	1 in	15T 16/32DP	0	0	0	0	•	U04
127-2 (C)	8000	1 1/4 in	14T 12/24DP	-	0	0	0	•	UO
	_	1 1/2 in	17T 12/24DP	-	-	0	0	•	U2
127-4 (C)	**	1 in	15T 16/32DP	0	0	0	0	0	UE
	_	1 1/4 in	14T 12/24DP	-	-	0	0	•	U1
152-4 (D)	**	1 3/4 in	13T 8/16DP	_	_	_	0	•	U17

Connectors for solenoids⁵⁾

00	totors for soletions		
12	Without connector (without solenoid, with hydraulic control only, without code)		
	DEUTSCH molded connector, 2-pin – without suppressor diode	P	

= Available

o = On request

- = Not available

Notes

- Note the project planning notes on page 54!
- ► In addition to the type code, please specify the relevant technical data when placing your order.
- $_{\mbox{\scriptsize 1)}}$ Only with mounting flange (ordering code position 09) D or U
- 2) According to ANSI B92.1a (splined shafts according to SAE J744)
- 3) With through-drive shaft, without hub, without intermediate flange, closed on a functionally reliable basis with cover. For mounting kits, see data sheet 95581.
- Mounting through bores pattern viewed from through drive with control at top.
- 5) Connectors for other electric components may deviate.

Hydraulic fluids

The A10VO variable pump is designed for operation with HLP mineral oil according to DIN 51524.

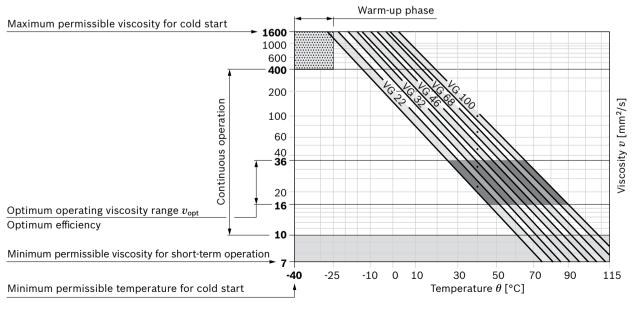
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- ▶ 90222: HFD hydraulic fluids (for permissible technical data, see data sheet 90225.)

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see selection diagram).

Notice


At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact the responsible member of staff at Bosch Rexroth.

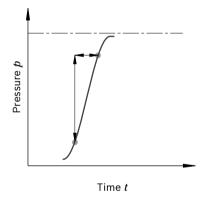
Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 1$ min, without load ($p \le 30$ bar), $n \le 1000$ rpm
Permissible tempera	ature difference	ΔT ≤ 25 K	between axial piston unit and hydraulic fluid
Warm-up phase	ν < 1600 to 400 mm ² /s	θ = -40 °C to -25 °C	Note the detailed information on operation with low temperatures, see data sheet 90300-03-B.
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		this corresponds, for VG 46 for example, to a temperature range of +5 °C to +85 °C (see selection diagram)
		θ = -25 °C to +110 °C	measured at port L , L_1 Observe the permissible temperature range of the shaft seal (ΔT = approx. 5 K between the bearing/shaft seal and port L , L_1)
	$v_{\rm opt}$ = 36 to 16 mm ² /s		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		<i>t</i> < 1 min, <i>p</i> < 0.3 • <i>p</i> _{nom}

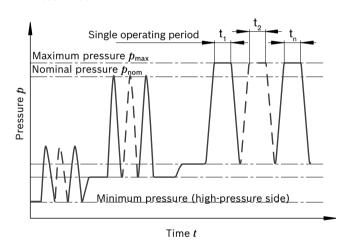
▼ Selection diagram

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit. A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.


At very high hydraulic fluid temperatures (90 $^{\circ}$ C to maximum 115 $^{\circ}$ C), cleanliness level 19/17/14 according to at least ISO 4406 is necessary.

Please contact us if the above classes cannot be observed.


Working pressure range

Pressure at working por	t B	_	Definition
Nominal pressure p_{nom}		280 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}		350 bar	The maximum pressure corresponds to the maximum working pressure within
Single operating perio	od	2 ms	the single operating period. The sum of the single operating periods must not
Total operating period	t	300 h	exceed the total operating period.
Minimum pressure (high-p	oressure side)	10 bar ¹⁾	Minimum pressure on the high-pressure side (B) which is required in order to prevent damage to the axial piston unit.
Rate of pressure change	R _{A max}	16000 bar/s	Maximum permissible pressure build-up and reduction speed during a pressure change across the entire pressure range.
Pressure at suction port	S (inlet)		
Minimum pressure $p_{\text{S min}}$	NG 45 to 100 at 1800 rpm	0.8 bar absolute	Minimum pressure at suction port S (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the rota-
	NG 140 to 180 at 1800 rpm	1.0 bar absolute	tional speed and displacement of the axial piston unit.
Maximum pressure $p_{\text{S max}}$		10 bar ²⁾	
Case pressure at port L ₁	, L ₂		
Maximum pressure $p_{ t L max}$		2 bar ²⁾ absolute	Maximum 0.5 bar higher than inlet pressure at port S , but not higher than $p_{\rm L max}$. A case drain line to the reservoir is required.

▼ Rate of pressure change $R_{A \text{ max}}$

▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.

¹⁾ Lower pressure is time-dependent, please contact us

²⁾ Other values on request

Technical data

Size		NG		045	071	100	140	180
Displacement, geome	etric, per revolution	$V_{\sf g\ max}$	cm ³	45	71.1	100	140	180
Maximum rotational speed ¹⁾²⁾	at $V_{ m g\ max}$	n_{nom}	rpm	3000	2550	2300	2200	1800
Flow	at n_{nom} and V_{gmax}	q_{v}	l/min	135	181	230	308	324
Power	at $n_{ m nom}$, $V_{ m g\; max}$ and Δp = 280 bar	P	kW	63	85	107	144	151
Torque	at $V_{ m g\ max}$ and Δp = 280 bar	T	Nm	200	317	446	624	802
	at $V_{\rm g\ max}$ and Δp = 100 bar	T	Nm	72	113	159	223	286
Rotary stiffness of	S	c	Nm/rad	37500	71884	121142	169537	171107
drive shaft	R	c	Nm/rad	41025	76545	-	-	_
	U	c	Nm/rad	30077	52779	91093	on request	-
	W	c	Nm/rad	34463	57460	101847	165594	_
Moment of inertia for	rotary group	$J_{\sf TW}$	kgm²	0.0035	0.0087	0.0167	0.0242	0,033
Maximum angular acc	celeration ³⁾	α	rad/s²	4000	2900	2400	2000	2000
Case volume		V	L	1.0	1.6	2.2	3.0	2.7
Weight (11N00 and 12	m	kg	25.8	40.4	56.4	70.5	75.2	
Weight (12Kxx) appro	Weight (12Kxx) approx.			27.4	43.3	62.6	79.5	_
Weight (22Uxx/32Uxx	κ) approx.	m	kg	32.6	51.8	76	90.2	89.4

Determining	the oper	rati	ng characteristics		
Flow	q_{v}	=	$\frac{V_{g} \times n \times \eta_{v}}{1000}$		[l/min]
Torque	Т	=	$\frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{hm}}$		[Nm]
Power	P	=	$\frac{2 \pi \times T \times n}{60000} =$	$\frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	[kW]

Key

 $V_{\rm g}$ Displacement per revolution [cm³]

 Δp Differential pressure [bar]

n Rotational speed [rpm]

 η_{v} Volumetric efficiency

 $\eta_{
m hm}$ Hydraulic-mechanical efficiency

 $\eta_{\rm t}$ Total efficiency ($\eta_{\rm t}$ = $\eta_{\rm v} \times \eta_{\rm hm}$)

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Bosch Rexroth recommend testing the load by means of experiment or calculation/simulation and comparison with the permissible values.

¹⁾ The values are applicable:

[–] to the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s

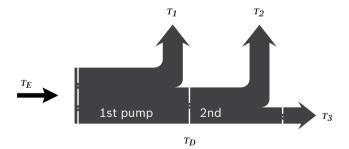
⁻ to hydraulic fluid based on mineral oils

²⁾ The values apply at absolute pressure $p_{\rm abs}$ = 1.0 bar at suction port **S**.

³⁾ The data are valid for values between the minimum required and maximum permissible rotational speed. Valid for external excitation (e.g. diesel engine 2 to 8 times rotary frequency, cardan shaft twice the rotary frequency). The limit value is only valid for a single pump. The load capacity of the connecting parts must be considered.

Permissible radial and axial forces on the drive shaft

Size		NG		45	71	100	140	180
Maximum radial force at a/2	F_{q}	$F_{q\;max}$	N	1500	1900	2300	2800	2300
Maximum axial force	$F_{ax} \xrightarrow{+} \overline{\qquad}$	$\pm F_{ax\ max}$	N	1500	2400	4000	4800	800


Notice

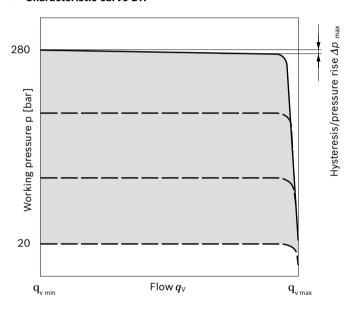
- ► For drives with radial loading (pinion, V-belt), please contact us!
- ► The values given are maximum values and do not apply to continuous operation.

Permissible input and through-drive torques

Size			45	71	100	140	180
Torque at $V_{g max}$ and $\Delta p = 280 \text{ bar}^{1)}$	T_{max}	Nm	200	316	446	624	802
Input torque at drive shaft, maximum ²⁾							
S	T_{Emax}	Nm	319	626	1104	1620	1834
	Ø	in	1	1 1/4	1 1/2	1 3/4	1 3/4
R	T_{Emax}	Nm	400	644	_	-	_
	Ø	in	1	1 1/4	_	-	_
U	T_{Emax}	Nm	188	300	595	on	_
						request	
	Ø	in	7 /8	1	1 1/4	1 1/2	_
W	T_{Emax}	Nm	-	394	636	1220	1488
	Ø	in	_	1	1 1/4	1 1/2	1 1/2
Maximum through-drive torque							
S	T_{Dmax}	Nm	319	492	778	1266	1266
R	T_{Dmax}	Nm	365	548	_	-	_
U	T_{Dmax}	Nm	188	_	595	on	_
						request	
W	T_{Dmax}	Nm	-	_	636	1220	1266

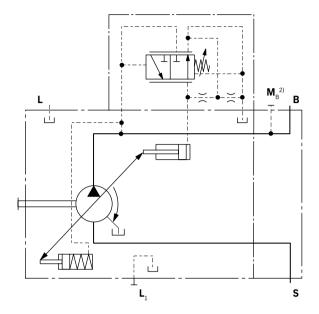
▼ Distribution of torques

Torque at 1st pump	T_1		
Torque at 2nd pump	T_2		
Torque at 3rd pump	T_3		
Input torque	T_E	=	$T_1 + T_2 + T_3$
	T_E	<	T_{Emax}
Through-drive torque	T_D	=	$T_2 + T_3$
	T_{D}	<	T _D max


- 1) Efficiency not considered
- 2) For drive shafts with no radial force

DR - Pressure controller

The pressure controller limits the maximum pressure at the pump outlet within the control range of the variable pump. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the working pressure exceeds the pressure command value at the pressure valve, the pump will regulate to a smaller displacement to reduce the control differential.


- ▶ Basic position in depressurized state: $V_{g \text{ max}}$.
- ► Setting range¹⁾ for pressure control 20 to 280 bar. Standard is 280 bar.

▼ Characteristic curve DR

Characteristic curve valid at n_1 = 1500 rpm and θ_{fluid} = 50 °C.

▼ Circuit diagram DR

Controller data

Size		45	71	100	140	180
Pressure rise, maximum	Δ p [bar]	6	8	10	12	14
Hysteresis and repeatability	Δ p [bar]	maxii	mum 3			
Control fluid consumption	[l/min]	maxii	mum a	pprox.	3	

The range of possible settings at the valve is higher.

In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded.

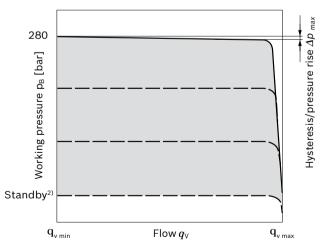
DRG - Pressure controller, remotely controlled

For the remote-controlled pressure controller, the LS pressure limitation is performed using a separately arranged pressure relief valve. Therefore any pressure control value under the pressure set on the pressure controller can be regulated. Pressure controller DR see page 9.

A pressure relief valve is externally piped to port **X** for remote control. This relief valve is not included in the scope of delivery of the DRG control.

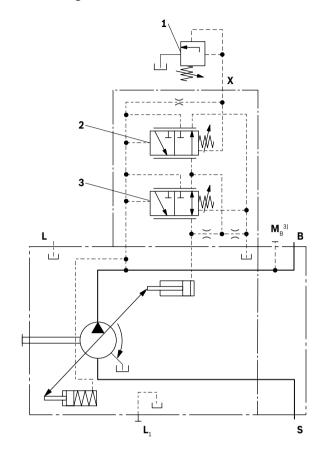
When there is differential pressure Δp at the control valve and with the standard setting on the remote-controlled pressure cut-off of 20 bar, the amount of control fluid at the port is **X** approx. 1.5 l/min. If a different setting (range 10 to 22 bar) is required, please state in plain text.

As a separate pressure relief valve (1) we recommend:


▶ A directly controlled, hydraulic or electric proportional one, suitable for the control fluid mentioned above.

The max. length of piping should not exceed 2 m.

- ▶ Basic position in depressurized state: $V_{\rm g\ max}$.
- ► Setting range¹⁾ for pressure control 20 to 280 bar (3). Standard is 280 bar.
- ► Setting range for differential pressure 10 22 bar(2) Standard is 20 bar.


Unloading port **X** to the reservoir results in a zero stroke (standby) pressure which is approx. 1 to 2 bar higher than the defined differential pressure Δp , however system influences are not taken into account.

▼ Characteristic curve DRG

Characteristic curve valid for n_1 = 1500 rpm and θ_{fluid} = 50 °C.

▼ Circuit diagram DRG

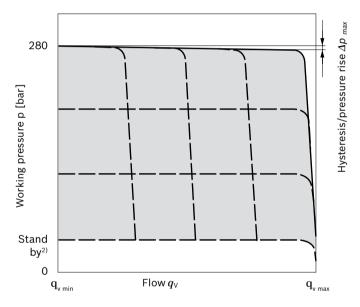
- **1** The separate pressure relief valve and the line are not included in the scope of delivery.
- 2 Remote-controlled pressure cut-off (G).
- 3 Pressure controller (DR)

Controller data

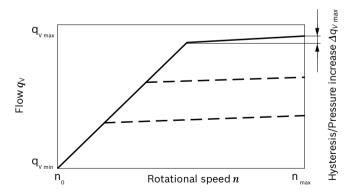
Size		45	71	100	140	180
Pressure rise, maximum	∆ p [bar]	6	8	10	12	14
Hysteresis and repeatability	Δp [bar]	max	imum (3		
Control fluid consumption	[l/min]	max	imum a	approx.	4.5	

In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded.The range of possible settings at the valve is higher.

²⁾ Zero stroke from pressure setting Δp on controller (2)

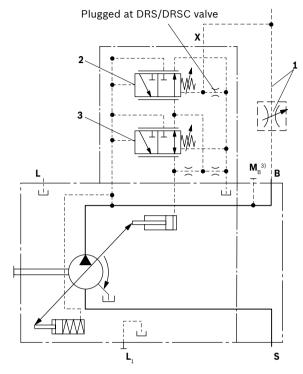

³⁾ Only with port plates 22 and 32

DRF/DRS/DRSC - Pressure and flow control


In addition to the pressure controller function (see page 9), an adjustable orifice (e.g. directional valve) is used to adjust the differential pressure upstream and downstream of the orifice. This is used to control the pump flow. The pump flow is equal to the actual hydraulic fluid quantity required by the consumer. With all controller combinations, the $V_{\rm g}$ reduction has priority.

- ▶ Basic position in depressurized state: $V_{g \text{ max}}$.
- ► Setting range¹⁾ to 280 bar. Standard is 280 bar
- ▶ DR pressure controller data see page 9

▼ Characteristic curve DRF/DRS/DRSC



▼ Characteristic curve at variable rotational speed

Characteristic curves valid at n_1 = 1500 rpm and θ_{fluid} = 50 °C.

▼ Circuit diagram DRF

- 1 The metering orifice (control block) and the line are not included in the scope of delivery.
- 2 Pressure and flow controller (FR).
- 3 Pressure controller (DR)

Note

The DRS and DRSC valve versions have no pilot line between **X** and the reservoir.

Unloading the LS-pilot line must be possible in the valve system.

Because of the flushing function sufficient unloading of the flow controller in DRS control valve **X**-line must also be provided.

If this pilot line of the ${\bf X}$ line does not have to be guaranteed, the DRSC control valve must be used.

For further information see page 12

¹⁾ In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded.

The range of possible settings at the valve is higher.

₂₎ Zero stroke from differential pressure setting Δp on controller (2)

³⁾ Only with port plates 22 and 32

Differential pressure Δp

► Standard setting: 14 bar
If another setting is required, please state in clear text.

► Setting range: 14 to 22 bar

Unloading port **X** to the reservoir results in a zero stroke (standby) pressure which is approx. 1 to 2 bar higher than the defined differential pressure Δp , however system influences are not taken into account.

Controller data

DR pressure controller data see page 9. Maximum flow deviation measured at drive speed n = 1500 rpm.

NG		45	71	100	140	180
Flow deviation	$\Delta q_{V\mathit{max}}$ [l/min]	1.8	2.8	4.0	6.0	8.0
Hysteresis and repeatability	Δ p [bar]	maximur	m 3			
Control fluid consumption	l/min	maximur maximur			,	,

LA... - Pressure, flow and power controller

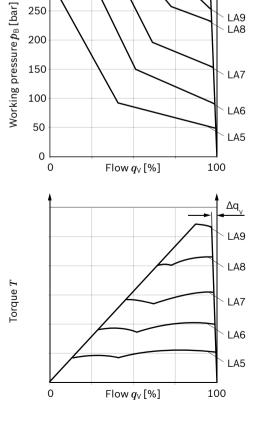
Pressure controller equipped as DR(G), see page 9 (10). Equipment of the flow controller like DRS, see page 11. In order to achieve a constant drive torque with varying working pressures, the swivel angle and with it the output flow from the axial piston pump is varied so that the product of flow and pressure remains constant. Flow controller is possible below the power control curve.

When ordering please state the power characteristics to be set at the factory in plain text, e.g. 20 kW at 1500 rpm.

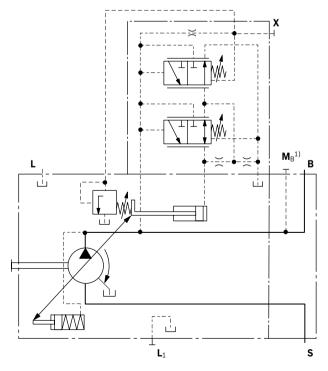
Controller data

- ▶ For technical data of pressure controller DR see page 9.
- ▶ For technical data of flow controller FR see page 11.
- ► Control fluid consumption max. approx. 5.5 l/min

Beginning of	Torque T [Nm] for si	orque T [Nm] for size					
control	45	71	100	140	180	Ordering code	
up to 50 bar	up to 42.0	up to 67.0	up to 94.0	up to 132.0	up to 167.0	LA5	
51 to 90 bar	42.1 × 76.0	67.1 × 121.0	94.1 × 169.0	132.1 × 237.0	167.1 × 302.0	LA6	
91 to 160 bar	76.1 × 134.0	121.1 × 213.0	169.1 × 299.0	237.1 × 418.0	302.1 × 540.0	LA7	
161 to 240 bar	134.1 × 202.0	213.1 × 319.0	299.1 × 449.0	418.1 × 629.0	540.1 × 810.0	LA8	
over 240 bar	over 202.1	over 319.1	over 449.1	over 629.1	over 810.1	LA9	

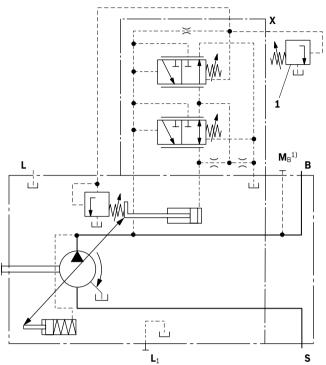

Conversion of the torque values in power [kW]

$$P = \frac{T}{6.4}$$
 [kW] (at 1500 rpm)

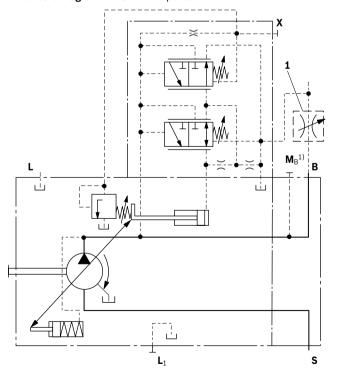

$$P = \frac{2\pi x T x n}{60000} [kW]$$
 (For rotational speeds, see table on page 7)

▼ Characteristic curve LA

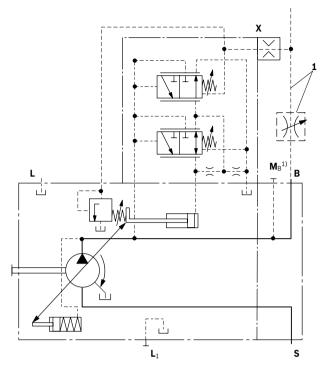
300 280



▼ Circuit diagram LA.D with pressure cut-off (for further combination options with LA.. see page 14)



LA... - Variations


▼ Circuit diagram LA.DG with pressure cut-off, remotely controlled

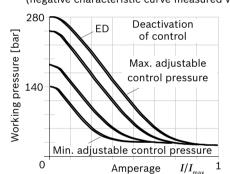
▼ Circuit diagram LA.S with separate flow control

▼ Circuit diagram LA.DS

1 The metering orifice and the pressure relief valve and line are not included in the scope of delivery.

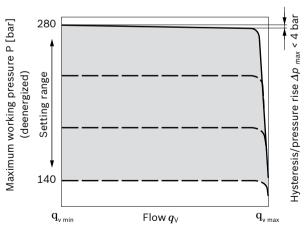
ED - Electro-hydraulic pressure control

The ED valve is set to a certain pressure by a specified variable solenoid current.


When changing the consumer (load pressure), this causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.

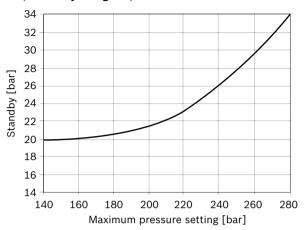
The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

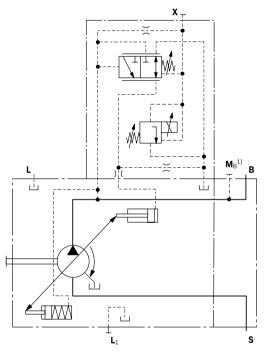
As the solenoid current signal drops towards zero, the pressure will be limited to p_{max} by an adjustable hydraulic pressure cut-off (secure fail safe function in case of power failure, e.g. for fan speed control). The response time characteristic curve of the ED control was optimized for the use as a fan drive system.


When ordering, specify the type of application in plain text.

▼ Static current-pressure characteristic curve ED (negative characteristic curve measured with pump in zero stroke)

Hysteresis static < 3 bar.


▼ Flow-pressure characteristic curve


Characteristic curves valid at n_1 = 1500 rpm and θ_{fluid} = 50 °C. Control fluid consumption: 3 to 4.5 l/min.

For standby standard setting, see diagram on right, other values on request.

▼ Influence of the pressure setting on standby (maximally energized)

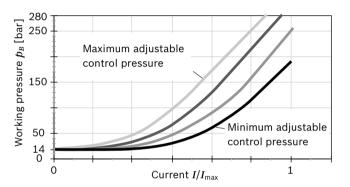
▼ Circuit diagram ED71/ED72

Technical data, solenoid	ED71	ED72
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Start of control at $p_{\sf max}$	100 mA	50 mA
End of control at p_{min}	1200 mA	600 mA
Current limit	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 to	100 to
	200 Hz	200 Hz
Duty cycle	100 %	100 %
Controls and type of protection	n: see connector v	ersion page 50

Operating temperature range at valve -20 °C to +115 °C

1) Only with port plates 22 and 32

ER - Electro-hydraulic pressure control


The ER valve is set to a certain pressure by a specified variable solenoid current.

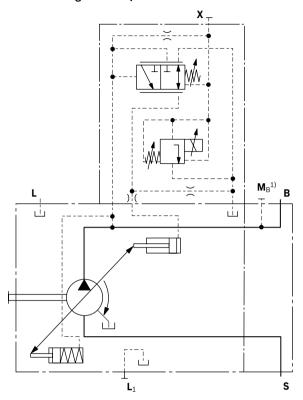
When a change is made at the consumer (load pressure), the position of the control spool will shift.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level. The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to p_{min} (stand by).

▼ Static current-pressure characteristic curve ER (positive characteristic curve measured with pump in zero stroke)

Hysteresis static current-pressure characteristic curve < 3 bar.


▼ Flow-pressure characteristic curve

Characteristic curves valid at n_1 = 1500 rpm and θ_{fluid} = 50 °C. Control fluid consumption: 3 to 4.5 l/min. Standby standard 14 bar. Other values on request.

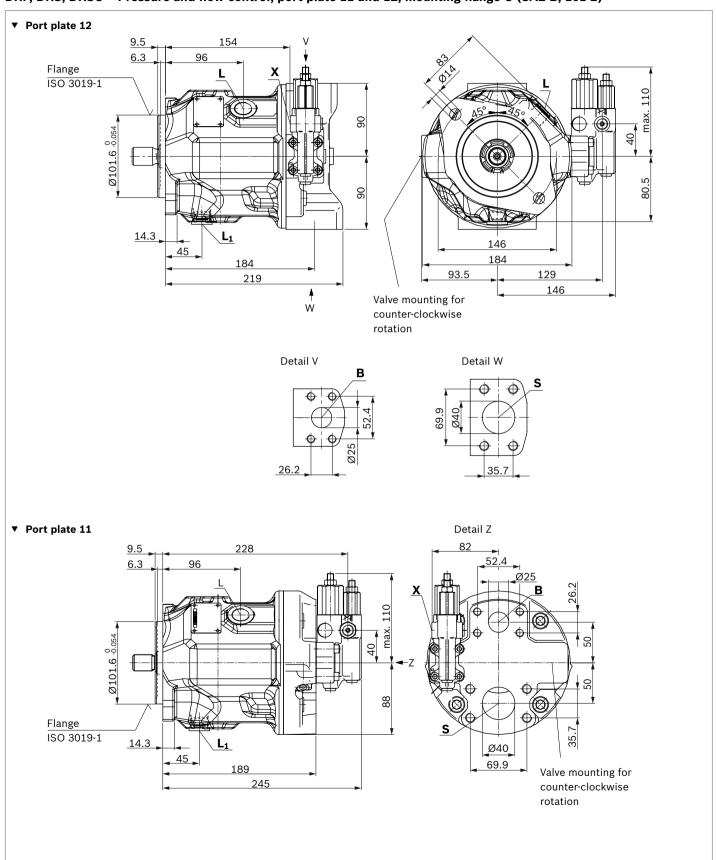
Influence of pressure setting on stand-by ±2 bar.

▼ Circuit diagram ER71/ER72

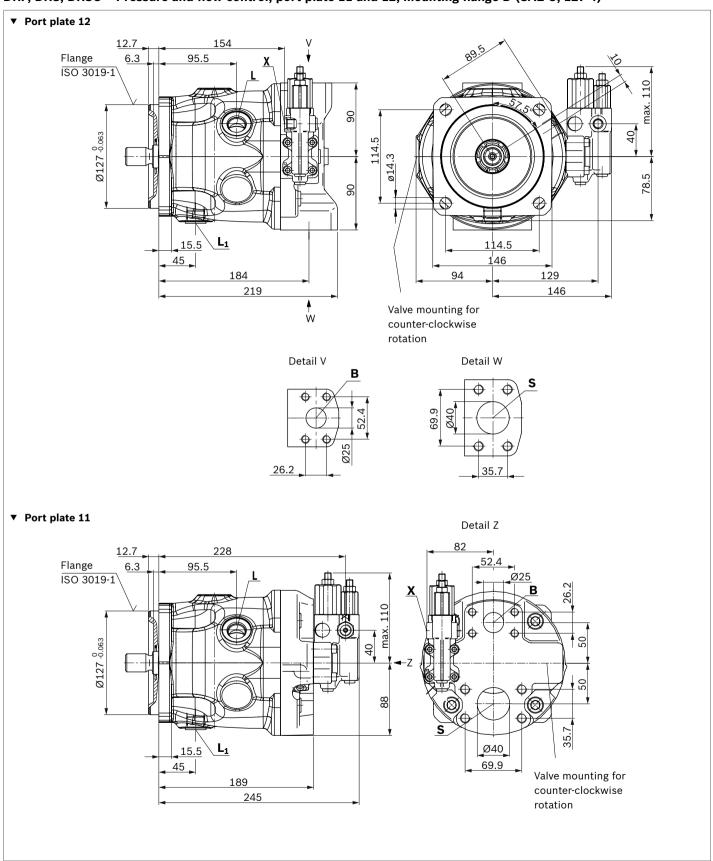
Technical data, solenoid	ED71	ED72
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Start of control at p_{min}	100 mA	50 mA
End of control at p_{max}	1200 mA	600 mA
Current limit	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 to	100 to
	200 Hz	200 Hz
Duty cycle	100 %	100 %
Controls and type of protection	n: see connector v	ersion page 50

Project planning note!

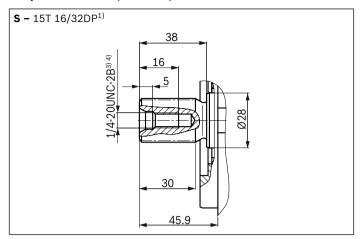
Excessive current levels (I > 1200 mA at 12 V or I > 600 mA at 24 V) to the ER solenoid can result in undesired pressure increases which can lead to pump or system damage. Therefore:

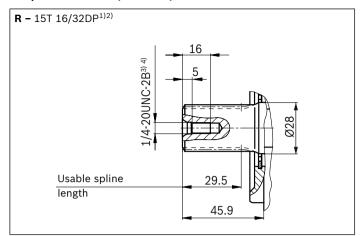

Operating temperature range at valve -20 °C to +115 °C

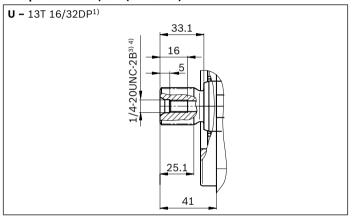
- ► Use I_{max} current limiter solenoids.
- ► An intermediate plate pressure controller can be used to protect the pump in the event of overflow.


An accessory kit with intermediate plate pressure controller can be ordered from Bosch Rexroth under part number R902490825.

Dimensions size 45


DRF, DRS, DRSC - Pressure and flow control, port plate 11 and 12; mounting flange C (SAE-B; 101-2)


DRF, DRS, DRSC - Pressure and flow control, port plate 11 and 12; mounting flange D (SAE-C; 127-4)


▼ Splined shaft 1 in (SAE J744)

▼ Splined shaft 1 in (SAE J744)

▼ Splined shaft 7/8 in (SAE J744)

Ports		Standard	Size ⁴⁾	p _{max} [bar] ⁵⁾	State ⁹⁾
В	Working port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 in M10 x 1.5, 17 deep	350	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/2 in M12 x 1.75; 20 deep	10	0
L	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	X ₈)
Х	Pilot pressure	ISO 11926	7/16-20 UNF-2A; 12 deep	350	0
M _B	Measuring pressure B	DIN 3852-2 ⁷⁾	G 1/4 in; 12 deep	350	Χ

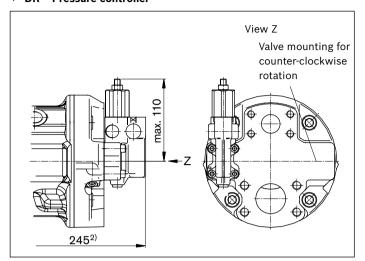
Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

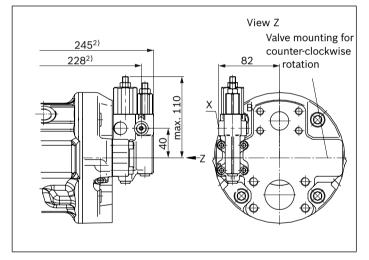
³⁾ Thread according to ASME B1.1

⁴⁾ For notes on tightening torques, see the instruction manual.

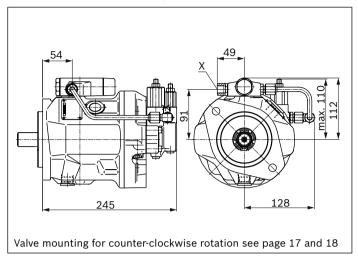
⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

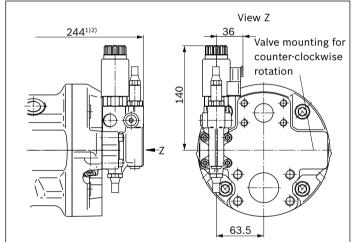

⁶⁾ Metric fastening thread is a deviation from standard.

⁷⁾ The countersink can be deeper than as specified in the standard.

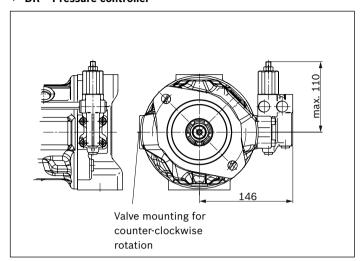

⁸⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 51).

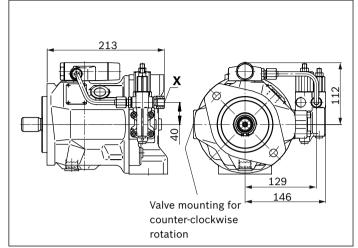
⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)


▼ DR - Pressure controller

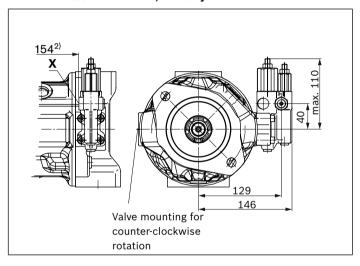

▼ DRG - Pressure controller, remotely controlled

▼ LA.DS - Pressure, flow and power controller

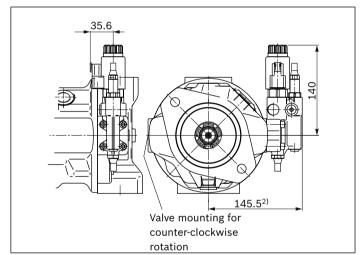

▼ ED7./ER7. - Pressure controller, electrical



¹⁾ ER7. 279 mm if using an intermediate plate pressure controller


²⁾ To mounting flange

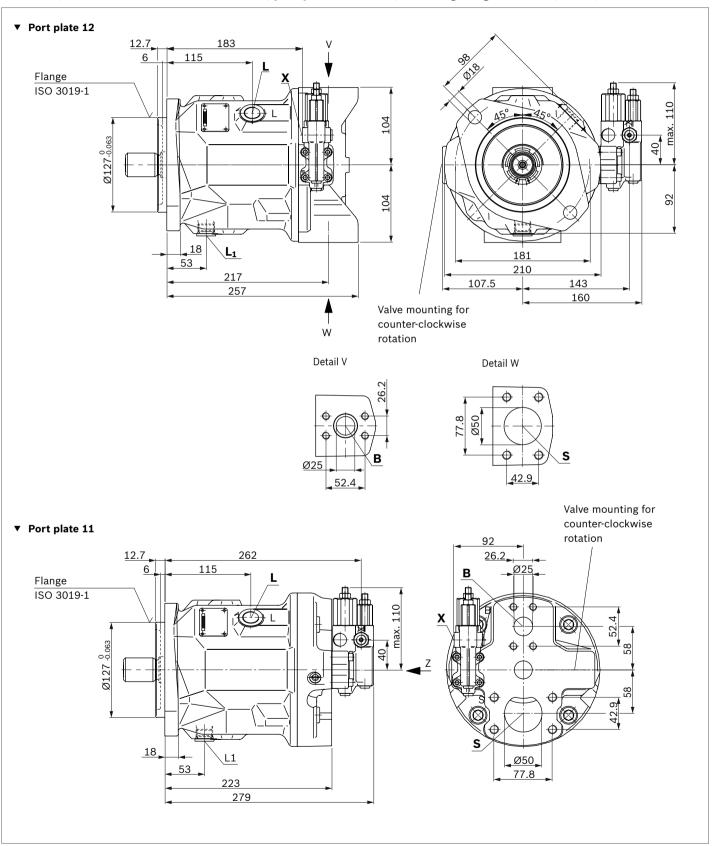
▼ DR - Pressure controller



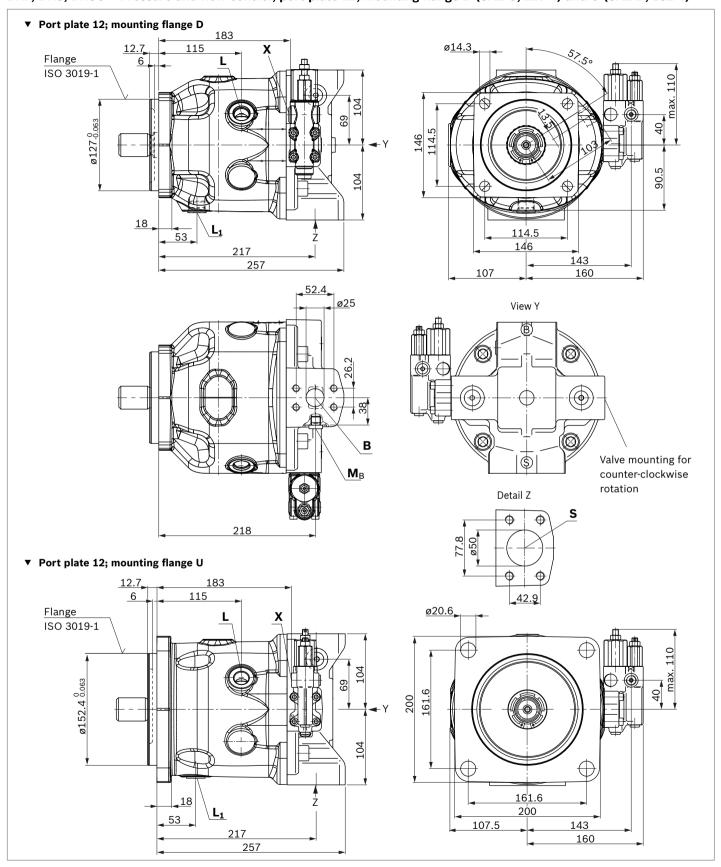
▼ DRG - Pressure controller, remotely controlled

▼ ED7./ER7. - Pressure controller, electrical

▼ LA.DS - Pressure, flow and power controller

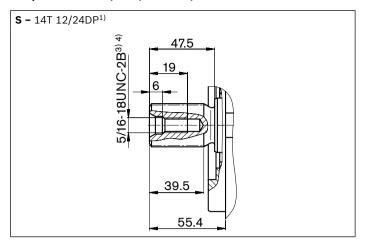


 $_{\mbox{\scriptsize 1)}}\,$ ER7. 180.5 mm if using an intermediate plate pressure controller

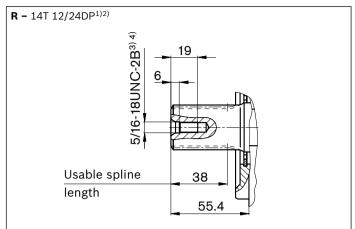

²⁾ To mounting flange

Dimensions size 71

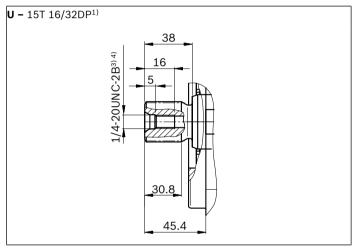
DRF, DRS, DRSC - Pressure and flow control, port plate 11 and 12; mounting flange C (SAE-C; 127-2)



DRF, DRS, DRSC - Pressure and flow control, port plate 12; mounting flange D (SAE-C; 127-4) and U (SAE-D; 152-4)



24


▼ Splined shaft 1 1/4 in (SAE J744)

▼ Splined shaft 1 1/4 in (SAE J744)

▼ Splined shaft 1 in (SAE J744)

Ports		Standard	Size ⁴⁾	$p_{max\;abs}$ [bar] $^{5)}$	State ⁹⁾
В	Working port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 in M10 x 1.5, 17 deep	350	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 in M12 x 1.75; 20 deep	10	0
L	Drain port	ISO 11926 ⁷⁾	7/8-14 UNF-2B; 12 deep	2	O ₈₎
L ₁	Drain port	ISO 11926 ⁷⁾	7/8-14 UNF-2B; 12 deep	2	X ₈₎
х	Pilot pressure	ISO 11926	7/16-20 UNF-2B; 12 deep	350	0
M _B	Measuring pressure B	DIN 3852-2 ⁷⁾	G 1/4 in; 12 deep	350	Χ

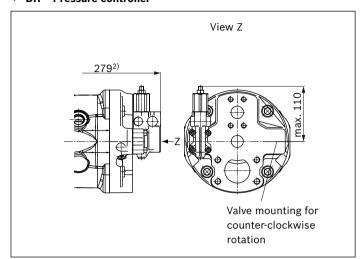
Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

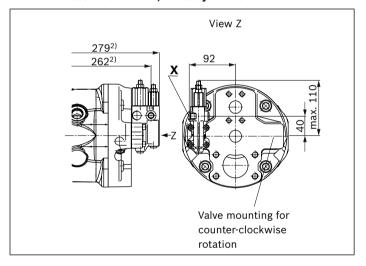
³⁾ Thread according to ASME B1.1

⁴⁾ For notes on tightening torques, see the instruction manual.

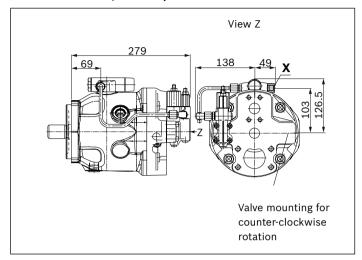
⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

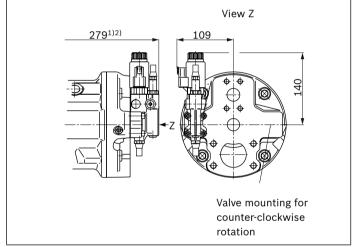

⁶⁾ Metric fastening thread is a deviation from standard.

⁷⁾ The countersink can be deeper than as specified in the standard.

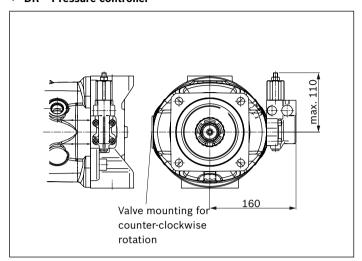

⁸⁾ Depending on the installation position, L or L₁ must be connected (also see installation instructions starting on page 51).

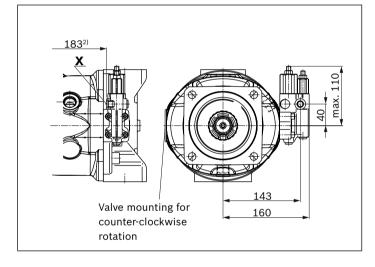
 ⁹⁾ O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)


▼ DR - Pressure controller

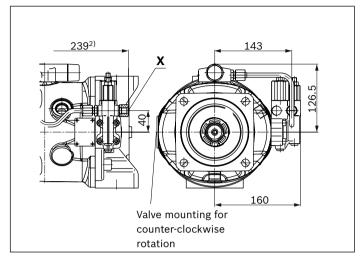

▼ DRG - Pressure controller, remotely controlled

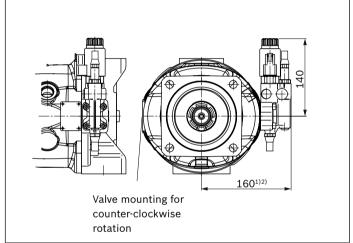
▼ LA.DS - Pressure, flow and power controller


▼ ED7./ER7. - Pressure controller, electrical


¹⁾ ER7. 314 mm if using an intermediate plate pressure controller

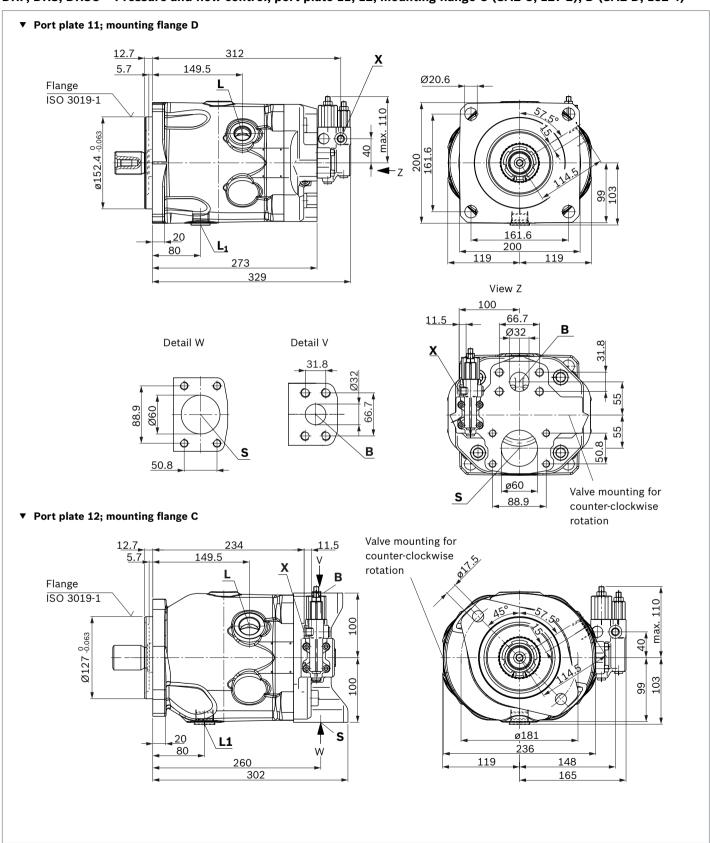
²⁾ To mounting flange


▼ DR - Pressure controller

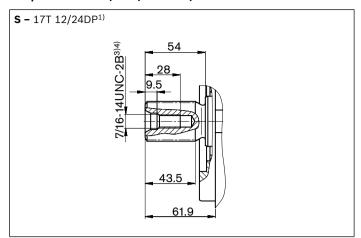

▼ DRG - Pressure controller, remotely controlled

▼ LA.DS - Pressure, flow and power controller

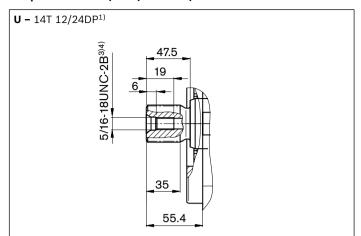
▼ ED7./ER7. - Pressure controller, electrical

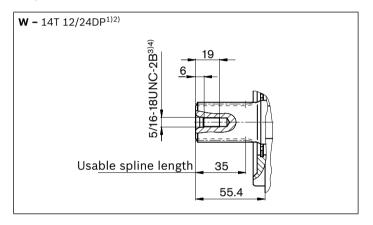


¹⁾ ER7. 195 mm if using an intermediate plate pressure controller


²⁾ To mounting flange

Dimensions size 100


DRF, DRS, DRSC - Pressure and flow control, port plate 11, 12; mounting flange C (SAE-C; 127-2), D (SAE-D; 152-4)


▼ Splined shaft 1 1/2 in (SAE J744)

▼ Splined shaft 1 1/4 in (SAE J744)

▼ Splined shaft 1 1/4 in (SAE J744)

Ports		Standard	Size ⁴⁾	$p_{maxabs}[bar]^{5)}$	State ⁹⁾
В	Working port (high-pressure series)	SAE J518 ⁶⁾	1 1/4 in	350	0
	Fastening thread	DIN 13	M14 x 2; 19 deep		
S	Suction port (standard pressure series)	SAE J518 ⁶⁾	2 1/2 in	10	0
	Fastening thread	DIN 13	M12 x 1.75; 17 deep		
L	Drain port	ISO 11926 ⁷⁾	1 1/16-12 UNF-2B; 15 deep	2	O ₈₎
L ₁	Drain port	ISO 11926 ⁷⁾	1 1/16-12 UNF-2B; 15 deep	2	X ₈₎
Х	Pilot pressure	ISO 11926	7/16-20 UNF; 12 deep	350	0
M _B	Measuring pressure B	DIN 3852-2 ⁷⁾	G 1/4 in; 12 deep	350	Х

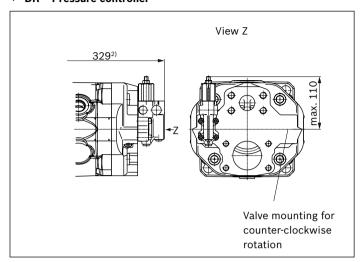
Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

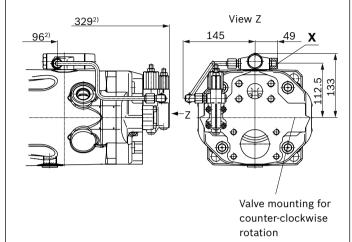
³⁾ Thread according to ASME B1.1

⁴⁾ For notes on tightening torques, see the instruction manual.

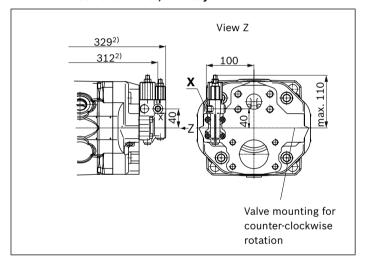
⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

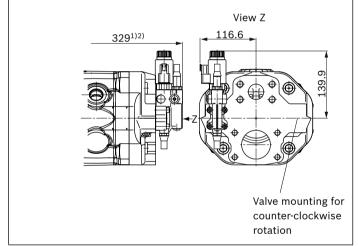

⁶⁾ Metric fastening thread is a deviation from standard.

⁷⁾ The countersink can be deeper than as specified in the standard.


⁸⁾ Depending on the installation position, L or L₁ must be connected (also see installation instructions starting on page 51).

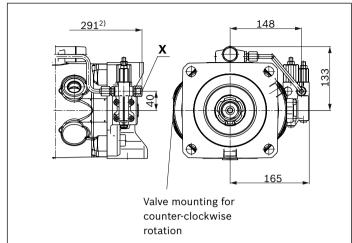
 ⁹⁾ O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)


▼ DR - Pressure controller

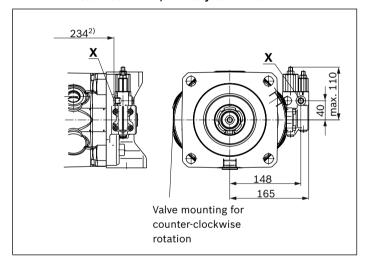

▼ LA.DS - Pressure, flow and power controller

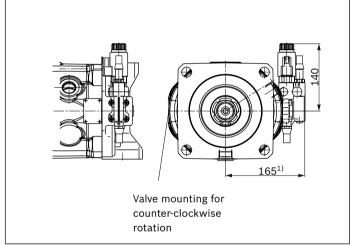
▼ DRG - Pressure controller, remotely controlled


▼ ED7./ER7. - Pressure controller, electrical


¹⁾ ER7. 364 mm if using an intermediate plate pressure controller

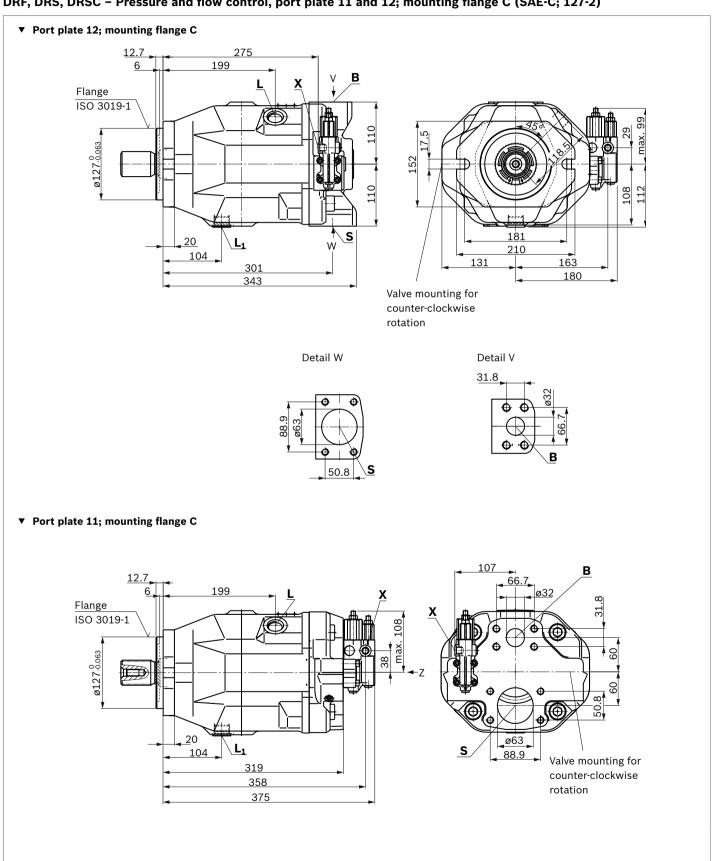
²⁾ To mounting flange

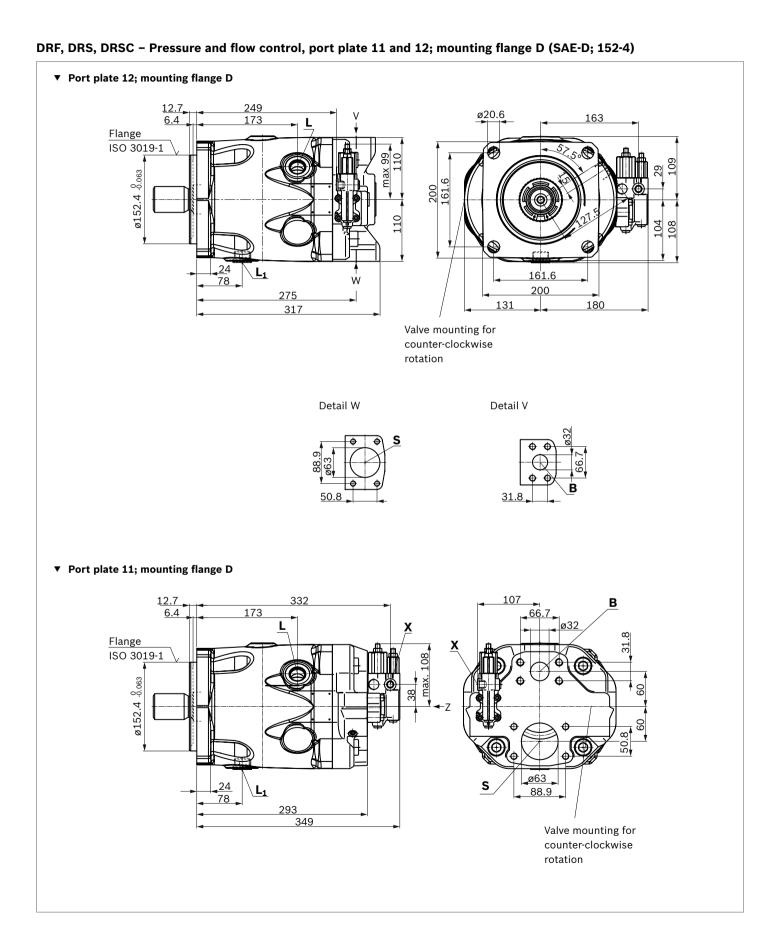

▼ DR - Pressure controller


▼ LA.DS - Pressure, flow and power controller

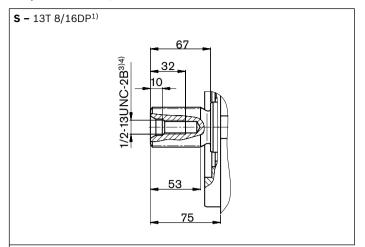
▼ DRG - Pressure controller, remotely controlled

▼ ED7./ER7. - Pressure controller, electrical

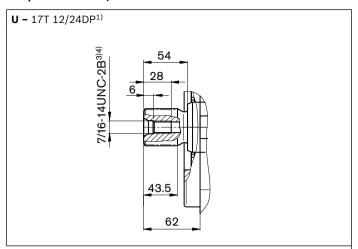


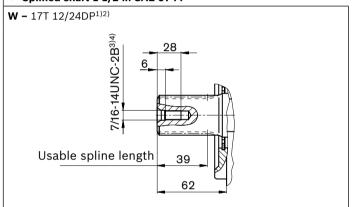

¹⁾ ER7. 200 mm if using an intermediate plate pressure controller

²⁾ To mounting flange


Dimensions size 140

DRF, DRS, DRSC - Pressure and flow control, port plate 11 and 12; mounting flange C (SAE-C; 127-2)




▼ Splined shaft 1 3/4 in SAE J744

▼ Splined shaft 1 1/2 in SAE J744

▼ Splined shaft 1 1/2 in SAE J744

Ports		Standard	Size ⁴⁾	$p_{maxabs}[bar]^{5)}$	State ⁹⁾
В	Working port (high-pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	350	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 x 1.75; 17 deep	10	0
L	Drain port	ISO 11926 ⁷⁾	1 1/16-12 UNF-2B; 15 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	1 1/16-12 UNF-2B; 15 deep	2	X ₈₎
х	Pilot pressure	ISO 11926	7/16-20 UNF-2B; 12 deep	350	0
M _B	Measuring pressure B	DIN 3852-2 ⁷⁾	G 1/4 in; 12 deep	350	Х

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

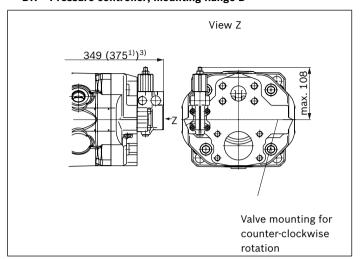
³⁾ Thread according to ASME B1.1

⁴⁾ For notes on tightening torques, see the instruction manual

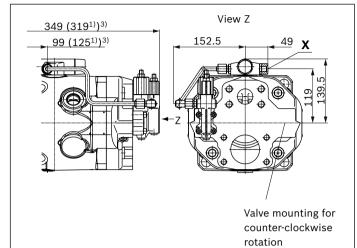
⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁶⁾ Metric fastening thread is a deviation from standard.

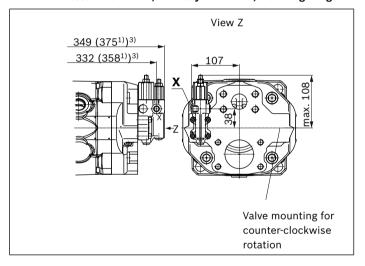
⁷⁾ The countersink can be deeper than as specified in the standard.

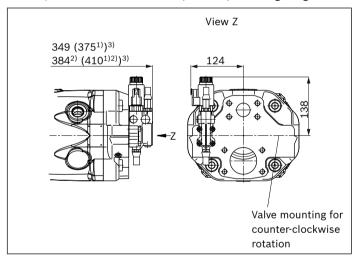

⁸⁾ Depending on the installation position, L or L₁ must be connected (also see installation instructions starting on page 51).

⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

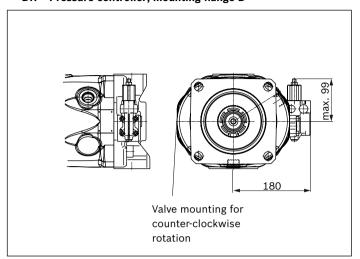

34

Port plate 11

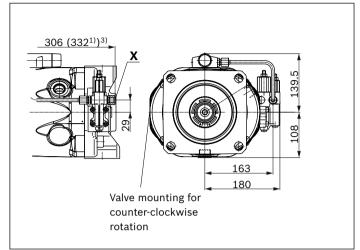

▼ DR - Pressure controller; mounting flange D


▼ LA.DS - Pressure, flow and power controller; mounting flange D

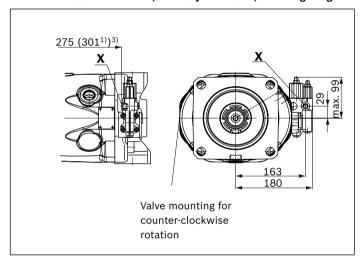
▼ DRG - Pressure controller, remotely controlled; mounting flange D

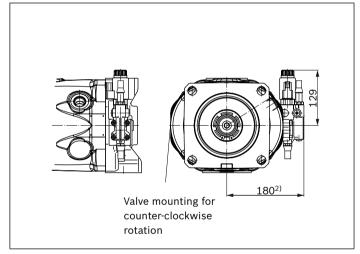


▼ ED7./ER7. - Pressure controller, electric; mounting flange D

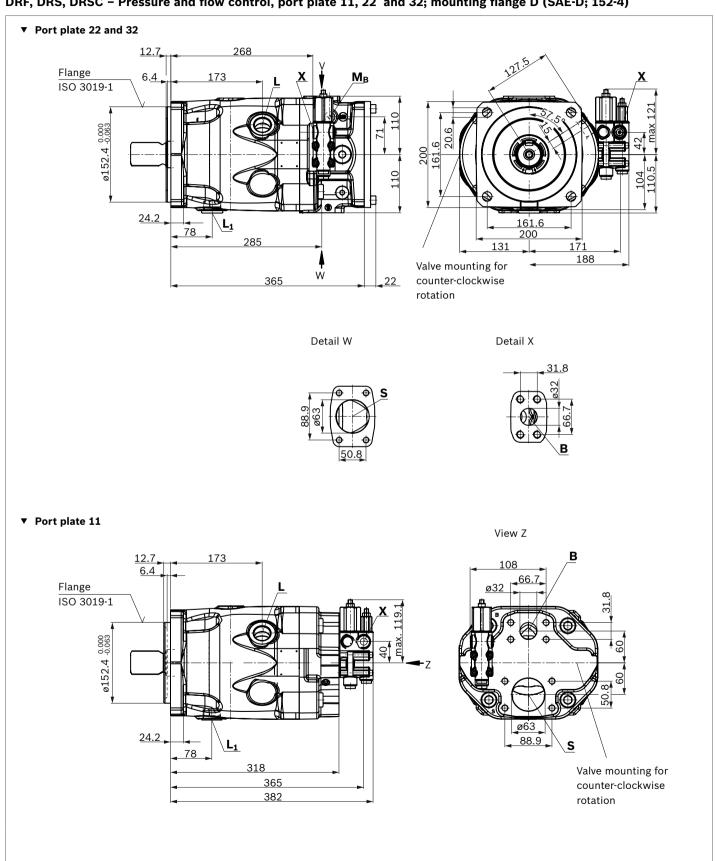


- $\scriptstyle{\mbox{\scriptsize 1)}}$ Dimension of mounting flange C
- 2) ER7. If using an intermediate plate pressure controller
- 3) To mounting flange


▼ DR - Pressure controller; mounting flange D

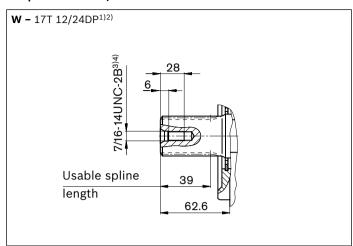

▼ LA.DS - Pressure, flow and power controller; mounting flange D

▼ DRG - Pressure controller, remotely controlled; mounting flange D


▼ ED7./ER7. - Pressure controller, electric; mounting flange D

- $\scriptstyle{\mbox{\scriptsize 1)}}$ Dimension of mounting flange C
- 2) ER7. 215 mm if using an intermediate plate pressure controller
- 3) To mounting flange

Dimensions size 180


DRF, DRS, DRSC - Pressure and flow control, port plate 11, 22 and 32; mounting flange D (SAE-D; 152-4)

▼ Splined shaft 1 3/4 in SAE J744

S - 13T 8/16DP¹⁾ 67 32 10 53 75

▼ Splined shaft 1 1/2 in SAE J744

Ports		Standard	Size ⁴⁾	$p_{max\;abs}$ [bar] $^{5)}$	State ⁹⁾
В	Working port (high-pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	350	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 x 1.75; 17 deep	10	0
L	Drain port	ISO 11926 ⁷⁾	1 5/16-12 UN-2B; 15 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	1 5/16-12 UN-2B; 15 deep	2	X8)
х	Pilot pressure	ISO 11926	7/16-20 UNF-2B; 12 deep	350	0
M _B	Measuring pressure B	DIN 3852-2 ⁷⁾	G 1/4 in; 12 deep	350	Х

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

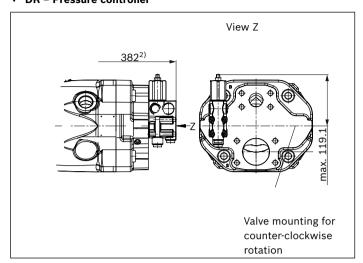
Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

³⁾ Thread according to ASME B1.1

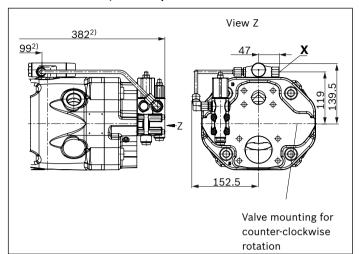
 $^{^{4)}}$ For notes on tightening torques, see the instruction manual

⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

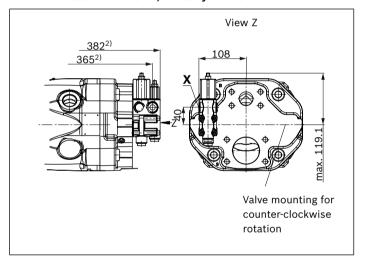
⁶⁾ Metric fastening thread is a deviation from standard.

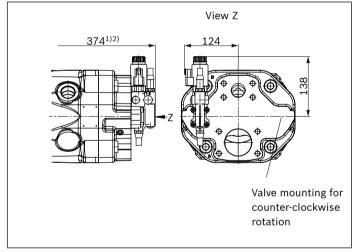

⁷⁾ The countersink can be deeper than as specified in the standard.

⁸⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 51).


⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

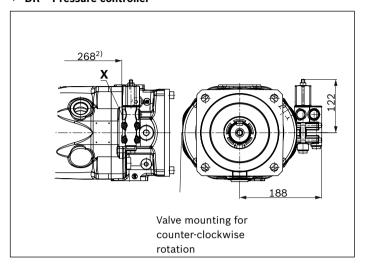
Port plate 11


▼ DR - Pressure controller

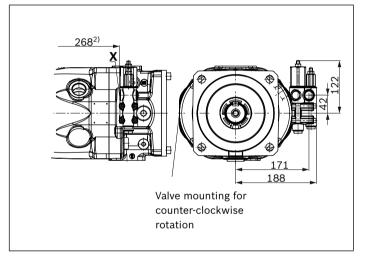

▼ LA.DS - Pressure, flow and power controller

▼ DRG - Pressure controller, remotely controlled

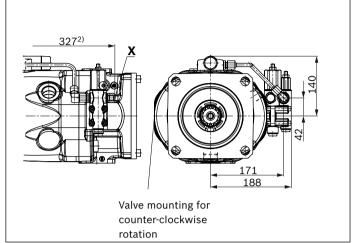
▼ ED7./ER7. - Pressure controller, electrical

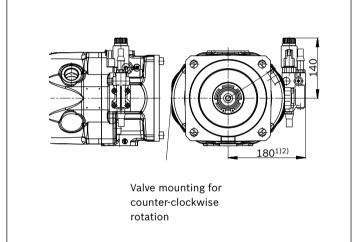


 $_{\mbox{\scriptsize 1)}}\,$ ER7. 409 mm if using an intermediate plate pressure controller


²⁾ To mounting flange

Port plate 22 and 32


▼ DR - Pressure controller


▼ DRG - Pressure controller, remotely controlled

▼ LA.DS - Pressure, flow and power controller

▼ ED7./ER7. - Pressure controller, electrical

 $[\]scriptstyle{\mbox{\scriptsize 1)}}$ ER7. 215 mm if using an intermediate plate pressure controller


²⁾ To mounting flange

Dimensions, through drives

Flange ISO 3019-1 (SAE J744)		Hub for splined shaft ¹⁾	Availa	Availability over sizes				
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180	
82-2 (A)	8, 0°, 00	5/8 in 9T 16/32DP	•	•	•	•	-	K01
	o, oo, oo	5/8 in 9T 16/32DP	0	0	0	0	•	U01

Not available Available o = On request

▼ 82-2 (A)

•	02-2	(A)

K01 (SAE J744 16-4 (A))	NG	M1	M2	МЗ	M4
	45	229	10.7	53.4	M10 × 1.5; 16 deep
	71	267	11.8	61.3	M10 × 1.5; 20 deep
	100	338	10.5	65	M10 × 1.5; 16 deep
	140 ⁵⁾	350	10.8	77.3	M10 × 1.5;
	1406)	376	-		16 deep

U01	NG	M1	M2	М3
(SAE J744 16-4 (A))				
	180	387	On reques	st

¹⁾ According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

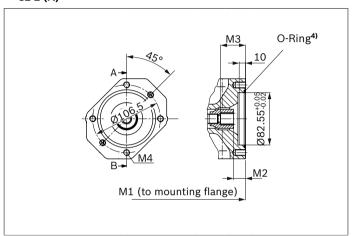
 $_{
m 2)}$ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

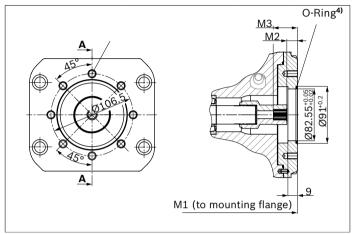
⁴⁾ O-ring included in the scope of delivery

⁵⁾ With D-flange

⁶⁾ With C-flange


Flange ISO 3019-1 (SAE J744)		Hub for splined shaft ¹⁾	Availa	Availability over sizes				
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180	
82-2 (A)	8, ♂, ⊶	3/4 in 11T 16/32DP	•	•	•	•	_	K52
	8, 60, 00	3/4 in 11T 16/32DP	0	0	0	0	•	U52

• = Available


o = On request

Not available

▼ 82-2 (A)

▼ 82-2 (A)
----------	----

K52 (SAE J744 19-4 (A-B))	NG	M1	M2	М3	M4
	45	229	18.9	38.7	M10 × 1.5; 16 deep
	71	267	21.3	41.4	M10 × 1.5; 20 deep
	100	338	19	38.9	M10 × 1.5; 16 deep
	1405)	350	18.9	38.6	M10 × 1.5;
	1406)	376	-		16 deep

U52 SAE J744 19-4 (A-B))	NG	M1	M2	М3	
	180	387	On request		

¹⁾ Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

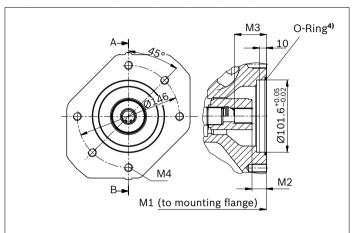
⁴⁾ O-ring included in the scope of delivery

⁵⁾ With D-flange

⁶⁾ With C-flange

42 A10VO Series 32 | Axial piston variable pump Dimensions, through drives

Flange ISO 3019-2 (metric)		Hub for splined shaft ¹⁾	Avail	Availability over sizes				
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180	
101-2 (B)	8, 00, 00	7/8 in 13T 16/32DP	•	•	•	•	_	K68
	8, 00, 00	7/8 in 13T 16/32DP	0	0	0	0	•	U68


▼ 101-2

• = Available

o = On request

Not available

▼ 101-2

M3 O-Ring ⁴) M3 W2 M4 M2 M1 (to mounting flange)

M12; 22 deep ³	O-Ring ⁴⁾ M3 M2 Z0-F6018
A	M1 (to mounting flange)

K68 (SAE J744 22-4) (B))	NG	M1	M2	МЗ	M4
	45	229	17.9	41.7	M12 × 1.75; 18 deep
	71	267	20.3	44.1	M12 × 1.75; 20 deep
	100	338	18	41.9	M12 × 1.75; 20 deep
	1405)	350	17.8	41.6	M12 × 1.75;
	140 ⁶⁾	376	-		20 deep

U68	NG	M1	M2	М3	
(SAE J744 22-4) (B))					
	180	387	18.6	42.4	

¹⁾ Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

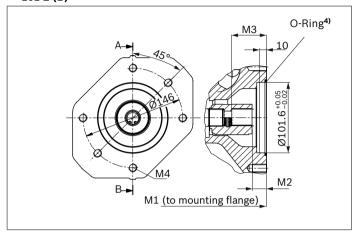
²⁾ Mounting through bores pattern viewed from through drive with control at top

 $_{
m 3)}$ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

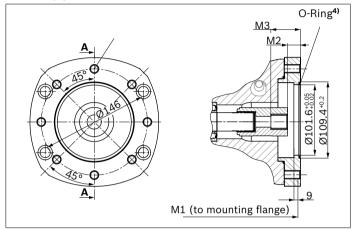
⁴⁾ O-ring included in the scope of delivery

⁵⁾ With D-flange

⁶⁾ With C-flange


Flange ISO 3019-1 (SAE J744)		Splined shaft ¹⁾	Availa	Availability over sizes					
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180		
101-2 (B)	8, 00, 00	1 in 15T 16/32DP	•	•	•	•	-	K04	
	8, 00, 00	1 in 15T 16/32DP	0	0	0	0	•	U04	

= Available


o = On request

Not available

▼ 101-2 (B)

▼ 101-2 (B)

K04 (SAE J744 25-4 (B-B))	NG	M1	M2	М3	M4
	45	229	18.4	46.7	M12 × 1.75; 18 deep
	71	267	20.8	49.1	M12 × 1.75; 20 deep
	100	338	18.2	46.6	M12 × 1.75; 20 deep
	1405)	350	18.3	45.9	M12 × 1.75;
	140 ⁶⁾	376			20 deep

U04 (SAE J744 25-4 (B-B))	NG	M1	M2	М3
	180	387	On reques	st

 $_{\mbox{\scriptsize 1)}}\,$ Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

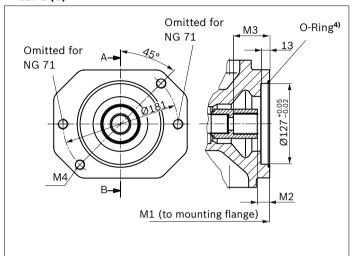
²⁾ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

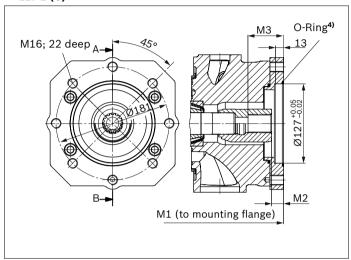
⁴⁾ O-ring included in the scope of delivery

⁵⁾ With D-flange

⁶⁾ With C-flange


44 **A10VO Series 32** | Axial piston variable pump Dimensions, through drives

Flange ISO 3019-1 (SAE J744)		Splined shaft ¹⁾	Avail	Availability over sizes					
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180		
127-2 (C)	o°, o-o	1 1/4 in 14T 12/24DP	-	•	•	•	-	K07	
	8, o°, 00	1 1/4 in 14T 12/24DP	-	0	0	0	•	U07	


Not available

• = Available • = On request - =

▼ 127-2 (C)

▼ 127-2 (C)

K07	NG	M1	M2	МЗ	M4 ³⁾
(SAE J744 32-4 (C))					
	71	267	21.8	58.6	M16 × 2;
					continuous
	100	338	19.5	56.4	M16 × 2;
					continuous
	140 ⁵⁾	350	19.3	56.1	M16 × 2; 24 deep
	140 ⁶⁾	376			

U07	NG	M1	M2	М3
(SAE J744 32-4 (C))				
	180	387	18.9	56.1

Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

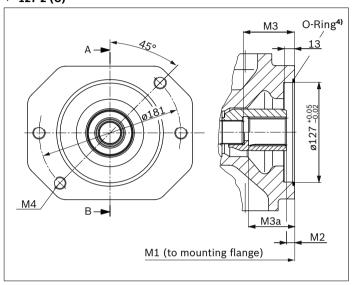
²⁾ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

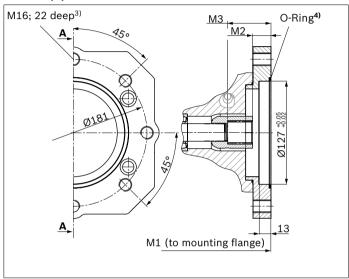
⁴⁾ O-ring included in the scope of delivery

⁵⁾ With D-flange

⁶⁾ With C-flange


Flange ISO 3019-1 (SAE J744)		Splined shaft ¹⁾	Α	Availal	Code				
Diameter	Attachment ²⁾	Diameter	Diameter		71	100	140	180	
127-2 (C)	σ⁰, ⊶	1 1/2 in 17T 12/24DP		-	-	•	•	_	K24
	8, 00, 00	1 1/2 in 17T 12/24DP		-	-	0	0	•	U24

• = Available


o = On request

- = Not available

▼ 127-2 (C)

▼ 127-2 (C)

K24 (SAE J744 38-4 (C-C))	NG	М1	M2	М3	МЗа	M4 ³⁾
	100	323	9.9	65	-	M16 × 2; continuous
	140 ⁵⁾	350	9.7	-	69.1	M16 × 2; 24 deep
	140 ⁶⁾	376				

U24	NG	M1	M2	МЗ
(SAE J744 38-4 (C-C))				
	180	387	9.9	62.3

Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

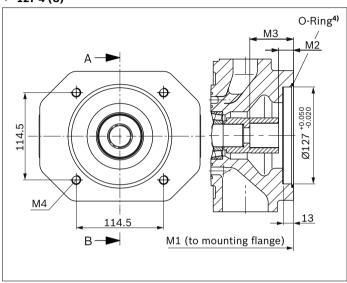
²⁾ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

⁴⁾ O-ring included in the scope of delivery

⁵⁾ With D-flange

⁶⁾ With C-flange


46 **A10VO Series 32** | Axial piston variable pump Dimensions, through drives

Flange ISO 3019-1 (SAE J744)		Splined shaft ¹⁾	Availa	Availability over sizes					
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180		
127-4 (C)	\$	1 1/4 in 14T 12/24DP	-	0	•	•	_	K15	
		1 1/4 in 14T 12/24DP	-	_	0	0	•	U15	

• = Available • = On request

= Not available

▼ 127-4 (C)

K15	NG	М1	M2	М3	M4 ³⁾
(SAE J744 32-4 (C))					
	100	338	17.9	56.5	M12 × 1.75; 22 deep
	140	350	17.9	56.5	M12 × 1.75; 22 deep

U15	NG	M1	M2	МЗ
(SAE J744 32-4 (C))				
	180	387	20	57

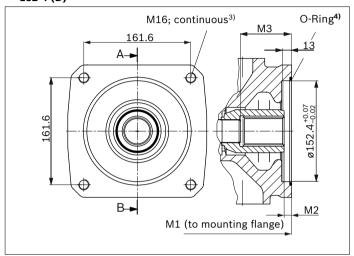
M1 (to mounting flange)

 $_{\mbox{\scriptsize 1)}}$ Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

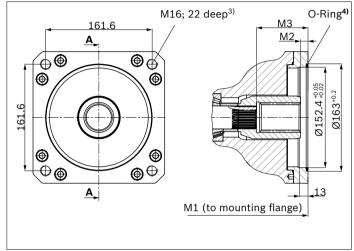
²⁾ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

 $^{^{4)}}$ O-ring included in the scope of delivery


Flange ISO 3019-1 (SAE J744)		Splined shaft ¹⁾	Availa	Availability over sizes				Code
Diameter	Attachment ²⁾	Diameter	45	71	100	140	180	
152-4 (D)	X	1 3/4 in 13T 8/16DP	-	_	_	•	_	K17
		1 3/4 in 13T 8/16DP	-	-	-	0	•	U17

• = Available


o = On request

Not available

▼ 152-4 (D)

▼ 152-4 (D)

K17	NG	M1	M2	М3
152-4 (D)				
	140	350	11	77.3

U17	NG	M1	M2	М3	
152-4 (D)					
	180	387	10.8	78.1	

 $_{\mbox{\scriptsize 1)}}$ Hub for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Mounting through bores pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the instructions in the instruction manual for the maximum tightening torques.

 $_{\mbox{\scriptsize 4)}}\,$ O-ring included in the scope of delivery

Overview of mounting options

Through drive			Mounting options – 2nd pump				
Flange (SAE) ISO 3019-1	Hub for splined shaft	Code ¹⁾	A10VO/31 and 32 NG (shaft)	A10VO/52 and 53 NG (shaft)	External gear pump		
82-2 (A)	5/8 in	(K)(U)01	18 (U)/31	10 (U), 18 (U)	Design F		
	3/4 in	(K)(U)52	18 (S, R)/31	10 (S) 18 (S, R)			
101-2 (B)	7/8 in	(K)(U)68	28 (S, R)/31	28 (S, R)	Design N/G		
	1 in	(K)(U)04	45 (S, R)	45 (S, R)	-		
127-2 (C)	1 1/4 in	(K)(U)07	71 (S, R)	85 (U,W)	-		
	1 1/2 in	(K)(U)24	100 (S)	85 (S), 100 (S)	-		
127-4 (C)	1 in	UE2	45 (S, R)/32	60, 63, 72 (U, W)	-		
	1 1/4 in	(K)(U)15	71 (S, R)/32	63 (S, R), 72 (S, R)	-		
152-4 (D)	1 3/4 in	(K)(U)17	140 (S); 180 (S)/32	-	-		

Mounting flange C, D and U (see order item 09 in the ordering code) and port plate with a K.. or U.. Through drive (see or items 10 and 11 in the ordering code) directly connected by the static and dynamic loading when installed.

The following table shows the version to be selected:

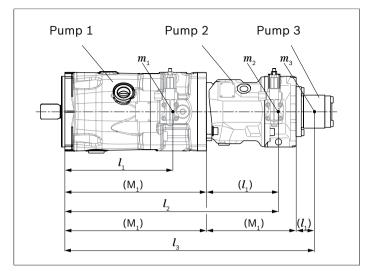
Mounting flange	С	D	U
Port plate	12	22 /32	22 /32
Through drive	K	U	U

^{1) 1}st Pump only with mounting flanges D or U for Uxx through drives (for more information, see also ordering code on page 3).

Combination pumps A10VO + A10VO

By using combination pumps, it is possible to have independent circuits without the need for splitter gearboxes. When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a "+".

Order example:


A10VO100DR/32R-VSC12K07+ A10VO71DR/32R-VSC12N00

It is permissible to use a combination of two single pumps of the same nominal size (tandem pump) considering a dynamic mass acceleration of maximum 10 g (= 98.1 m/s²) without additional support brackets.

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque (please consult us).

The "K..." through drives are plugged with a **non-pres-sure-resistant** cover. Before commissioning the units, they must therefore be equipped with pressure-resistant covers. Through drives can also be ordered with pressure-resistant covers, please state in plain text.

The "U.." through drives are equipped with a flexible, universal through drive (without hub and intermediate flange) and a pressure-resistant cover. This enables the utilization of various through drive options without any machining of the port plate. Details of the necessary adapter parts can be found in data sheet RE 95581.

m_1, m_2, m_3	Weight of pump	[kg]		
l_1, l_2, l_3	Distance, center of gravity	[mm]		

$$T_m = (m_1 \bullet l_1 + m_2 \bullet l_2 + m_3 \bullet l_3) \bullet \frac{1}{102}$$
 [Nm]

Calculation for multiple pumps

- l_1 = Distance, center of gravity, front pump (value from "Permissible mass moment of inertia" table)
- l_2 = Dimension "M1" from through drive drawings (page 40 to 47) + l_1 of the 2nd pump
- I_3 = Dimension "M1" from through drive drawings (page 40 to 47) of the 1st pump + "M1" of the 2nd pump + I_1 of the 3rd pump

Permissible mass moment of inertia

NG			45	71	100	140	180	
for 4-hole flange								
static	T_m	Nm	3000	3000	4500	4500	4500	
dynamic at 10 g (98.1 m/s²)	T_m	Nm	300	300	450	450	450	
for 2-hole flange								
static	T_m	Nm	1370	2160	3000	3000 ¹⁾	_	
dynamic at 10 g (98.1 m/s²)	T_m	Nm	137	216	300	3001)	_	
Weight with port plate 11/12N00 and mounting flange C	m	kg	25.8	40.4	56.4	70.5	75.2	
Weight with port plate 12K and mounting flange C	m	kg	27.4	43.3	62.6	79.5	_	
Weight with port plate 22(32)U00 and mounting flange D or U	m	kg	32.6	51.8	76	90.2	89.4	
Distance, center of gr avity at 11/12N00	l_1	mm	108	120	138	158	159	
Distance, center of gravity at 12Kxx	l_1	mm	115	129	153	177	_	
Distance, center of gravity at 22/32Uxx	l_1	mm	135	153	184	196	190	

Please also pay attention to the installation information on page 53.

Pump combinations permissible only max. as double pump up to the same size.

Connector for solenoids

DEUTSCH DT04-2P

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection ensues with an installed mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Switching symbol

Notice

If necessary, you can change the position of the connector by turning the solenoid.

The procedure is defined in the instruction manual.

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Electronic controls

Control	Electronics function	Electronics		Data sheet
Electric pressure control	Controlled power outlet	RA	analog	95230
		RC4-5/30	digital	95205

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be considered with a long-term standstill.

Particularly with the "drive shaft up/down" installation position, filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the housing area must be discharged to the reservoir via the highest available tank port (L, L_1) . If a shared drain line is used for several units, make sure that the respective case pressure is not exceeded. The shared drain line must be dimensioned to ensure that the

that the respective case pressure is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operating conditions, specifically on cold start. If this is not possible, separate drain lines must be laid if necessary.

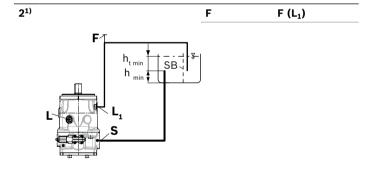
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

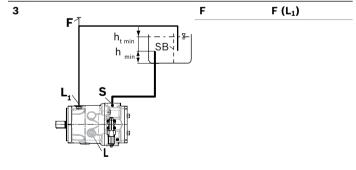
In all operating conditions, the suction lines and the drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height $h_{\rm S}$ results from the overall loss of pressure. However, it must not be higher than $h_{\rm S\ max}$ = 800 mm. The minimum suction pressure at port **S** (see the technical data on page 6) must not be fallen short of during operation and at cold starting either. When designing the reservoir, ensure adequate distance between the suction line and the drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

Key	
L, L ₁ (F)	Filling / air bleeding
S	Suction port
L, L ₁	Drain port
SB	Baffle (baffle plate)
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)
h _{ES min}	Minimum necessary height required to protect the axial piston unit from draining (25 mm)
h _{S max}	Maximum permissible suction height (800 mm)

1) Because complete air bleeding and filling are not possible in this position, the pump should be air bled and filled in a horizontal position before installation.

Installation position

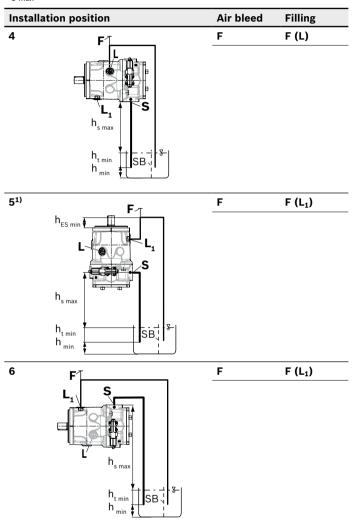

See the following examples 1 to 9.


Further installation positions are available upon request. Recommended installation position: **1** and **3**

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir and below the minimum fluid level of the reservoir.

Installation position	Air bleed	Filling
1	F	F (L)
F h _{t min} SB		



Notice

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. To prevent the axial piston unit from draining in position 5, the height difference $h_{\text{ES min}}$ must be at least 25 mm. Observe the maximum permissible suction height $h_{\text{S max}}$ = 800 mm.

A check valve in the drain line is only permissible in individual cases. Consult us for approval.

Inside-reservoir installation

Inside-reservoir installation is when the axial piston unit is installed in the reservoir below the minimum fluid level.

The axial piston unit is completely below the hydraulic fluid. If the minimum fluid level is equal to or below the upper edge of the pump, see chapter "Above-reservoir installation".

Axial piston units with electrical components (e.g., electric control, sensors) may not be installed in a reservoir below the fluid level.

Installation position	Air bleed	Filling
7 SB UW UW U	Over the highest tank port L	Automatically via the open port L or L ₁ due to the position under the hydraulic fluid level
8 ¹⁾	Over the highest tank port L ₁	
SB SB	Over the highest tank port L ₁	

For key, see page 51.

¹⁾ Because complete air bleeding and filling are not possible in this position, the pump should be air bled and filled in a horizontal position before installation.

Assembly note

Due to the compact design of the housing, socket-head screws with a hexagon socket must be used to attach the axial piston pump. Please observe the maximum permissible surface pressure according to VDI 2230.

Apart from this, you should take into account the information regarding tightening torques in the instruction manual.

Project planning notes

- ► The A10VO axial piston variable pump is designed to be used in open circuit.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ► Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly.

 If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all versions of the product are approved for use in a safety function pursuant to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.

- Pressure controllers are not protection against overpressure. A pressure relief valve is to be provided for the hydraulic system.
- ▶ Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- ▶ During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Moving parts in control equipment (e.g. valve spools) can, under certain circumstances get blocked in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk. The machine/ system manufacturer must check whether additional measures are required on the machine for the relevant application in order to bring the driven consumer into a safe position (e.g. safe stop) and ensure any measures are properly implemented.

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information, he information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.